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BELIEF IN THE LAW OF SMALL NUMBERS

AMOS TVERSKY AND DANIEL KAHNEMAN 1

Hebrew University of Jerusalem

People have erroneous intuitions about the laws of chance. In particular, they
regard a sample randomly drawn from a population as highly representative,
that is, similar to the population in all essential characteristics. The prevalence
of the belief and its unfortunate consequences for psychological research are
illustrated by the responses of professional psychologists to a questionnaire con-
cerning research decisions.

"Suppose you have run an experiment on 20 Apparently, most psychologists have an ex-
subjects, and have obtained a significant re-
sult which confirms your theory (z = 2.23, p
< .05, two-tailed). You now have cause to
run an additional group of 10 subjects. What
do you think the probability is that the re-
sults will be significant, by a one-tailed test,
separately for this group?"

If you feel that the probability is some-
where around .35, you may be pleased to
know that you belong to a majority group.
Indeed, that was the median answer of two
small groups who were kind enough to re-
spond to a questionnaire distributed at meet-
ings of the Mathematical Psychology Group
and of the American Psychological Associa-
tion.

On the other hand, if you feel that the
probability is around .48, you belong to a
minority. Only 9 of our 84 respondents gave
answers between .40 and .60. However, .48
happens to be a much more reasonable esti-
mate than .85.2

1 The ordering of authors is random. We wish to
thank the many friends and colleagues who com-
mented on an earlier version, and in particular we
arc indebted to Maya Bar-Hillel, Jack Block, Jacob
Cohen, Louis L. Gultman, John W. Tukey, Ester
Samuel, and Gideon Shwarz.

Requests for reprints should be sent to Amos
Tvcrsky, Center for Advanced Study in the Behav-
ioral Sciences, 202 Junipero Scrra Boulevard, Stan-
ford, California 94305.

2 The required estimate can be interpreted in sev-
eral ways. One possible approach is to follow com-
mon research practice, where a value obtained in one
study is taken to define a plausible alternative to
the null hypothesis. The probability requested in the
question can then be interpreted as the power of the
second test (i.e., the probability of obtaining a sig-
nificant result in the second sample) against the
alternative hypothesis defined by the result of the
first sample. In the special case of a test of a mean

aggerated belief in the likelihood of success-
fully replicating an obtained finding. The
sources of such beliefs, and their consequences
for the conduct of scientific inquiry, are what
this paper is about. Our thesis is that people
have strong intuitions about random sam-
pling; that these intuitions are wrong in fun-
damental respects; that these intuitions are
shared by naive subjects and by trained sci-
entists; and that they are applied with un-
fortunate consequences in the course of sci-
entific inquiry.

We submit that people view a sample ran-
domly drawn from a population as highly
representative, that is, similar to the popula-
tion in all essential characteristics. Conse-
quently, they expect any two samples drawn
from a particular population to be more simi-
lar to one another and to the population than
sampling theory predicts, at least for small
samples.

The tendency to regard a sample as a rep-
resentation is manifest in a wide variety of
situations. When subjects are instructed to
generate a random sequence of hypothetical
tosses of a fair coin, for example, they pro-
duce sequences where the proportion of

with known variance, one would compute the power
of the test against the hypothesis that the population
mean equals the mean of the first sample. Since the
size of the second sample is half that of the first, the
computed probability of obtaining z^> 1.645 is only
.473. A theoretically more justifiable approach is to
interpret the requested probability within a Baycsian
framework and compute it relative to some appropri-
ately selected prior distribution. Assuming a uni-
form prior, the desired posterior probability is .478.
Clearly, if the prior distribution favors the null hy-
pothesis, as is often the case, the posterior proba-
bility will be even smaller.
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heads in any short segment stays far closer
to .SO than the laws of chance would predict
(Tune, 1964). Thus, each segment of the re-
sponse sequence is highly representative of
the "fairness" of the coin. Similar effects are
observed when subjects successively predict
events in a randomly generated series, as in
probability learning experiments (Estes, 1964)
or in other sequential games of chance. Sub-
jects act as if every segment of the random
sequence must reflect the true proportion: if
the sequence has strayed from the population
proportion, a corrective bias in the other direc-
tion is expected. This has been called the
gambler's fallacy.

The heart of the gambler's fallacy is a mis-
conception of the fairness of the laws of
chance. The gambler feels that the fairness of
the coin entitles him to expect that any devi-
ation in one direction will soon be cancelled
by a corresponding deviation in the other.
Even the fairest of coins, however, given the
limitations of its memory and moral sense,
cannot be as fair as the gambler expects it to
be. This fallacy is not unique to gamblers.
Consider the following example:

The moan IQ of the population of eighth graders
in a cily is known to be 100. You have selected a
random sample of SO children for a study of educa-
tional achievements. The first child tested has an
IQ of ISO. What do you expect the mean IQ to be
for the whole sample?

The correct answer is 101. A surprisingly large
number of people believe that the expected JQ
for the sample is still 100. This expectation
can be justified only by the belief that a
random process is self-correcting. Idioms such
as "errors cancel each other out" reflect the
image of an active self-correcting process.
Some familiar processes in nature obey such
laws: a deviation from a stable equilibrium
produces a force that restores the equilibrium.
The laws of chance, in contrast, do not work
that way: deviations are not canceled as
sampling proceeds, they are merely diluted.

Thus far, we have attempted to describe
two related intuitions about chance. We pro-
posed a representation hypothesis according to
which people believe samples to be very simi-
lar to one another and to the population from
which they are drawn. We also suggested that
people believe sampling to be a self-correcting

process. The two beliefs lead to the same con-
sequences. Both generate expectations about
characteristics of samples, and the variability
of these expectations is less than the true-
variability, at least for small samples.

The law of large numbers guarantees that
very large samples will indeed be highly rep-
resentative of the population from which they
are drawn. If, in addition, a self-corrective
tendency is at work, then small samples should
also be highly representative and similar to
one another. People's intuitions about random
sampling appear to satisfy the law of small
numbers, which asserts that the law of large
numbers applies to small numbers as well.

Consider a hypothetical scientist who lives
by the law of small numbers. How would his
belief affect his scientific work? Assume out-
scientist studies phenomena whose magnitude
is small relative to uncontrolled variability,
that is, the signal-to-noise ratio in the mes-
sages he receives from nature is low. Our sci-
entist could be a meteorologist, a pharma-
cologist, or perhaps a psychologist.

If he believes in the law of small numbers,
the scientist will have exaggerated confidence
in the validity of conclusions based on small
samples. To illustrate, suppose he is engaged
in studying which of two toys infants will
prefer to play with. Of the first five infants
studied, four have shown a preference for the
same toy. Many a psychologist will feel some
confidence at this point, that the null hypothe-
sis of no preference is false. Fortunately, such
a conviction is not a sufficient condition for
journal publication, although it may do for a
book. By a quick computation, our psycholo-
gist will discover that the probability of a
result as extreme as the one obtained is as
high as 3/8 under the null hypothesis.

To be sure, the application of statistical
hypothesis testing to scientific inference is
beset with serious difficulties. Nevertheless, the
computation of significance levels (or likeli-
hood ratios, as a Bayesian might prefer)
forces the scientist to evaluate the obtained
effect in terms of a valid estimate of sampling
variance rather than in terms of his subjective
biased estimate. Statistical tests, therefore,
protect the scientific community against overly
hasty rejections of the null hypothesis (i.e.,
Type 1 error) by policing its many members
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who would rather live by the law of small
numbers. On the other hand, there are no
comparable safeguards against the risk of
failing to confirm a valid research hypothesis
(i.e., Type II error).

Imagine a psychologist who studies the cor-
relation between need for Achievement and
grades. When deciding on sample size, he may
reason as follows: "What correlation do I
expect? r ~ .35. What N do I need to make
the result significant? (Looks at table.) N =
3,3. Fine, that's my sample." The only flaw in
this reasoning is that our psychologist has for-
gotten about sampling variation, possibly be-
cause he believes that any sample must be
highly representative of its population. How-
ever, if his guess about the correlation in the
population is correct, the correlation in the
sample is about as likely to lie below or above
.35. Hence, the likelihood of obtaining a sig-
nificant result (i.e., the power of the test) for
N ~ 33 is about .50.

In a detailed investigation of statistical
power, Cohen (1962, 1969) has provided
plausible definitions of large, medium, and
small effects and an extensive set of computa-
tional aids to the estimation of power for a
variety of statistical tests. In the normal test
for a difference between two means, for ex-
ample, a difference of .2 So- is small, a differ-
ence of .SOo- is medium, and a difference of
\a is large, according to the proposed defini-
tions. The mean IQ difference between clerical
and semiskilled workers is a medium effect.
In an ingenious study of research practice,
Cohen (1962) reviewed all the statistical
analyses published in one volume of the Jour-
nal of Abnormal and Social Psychology, and
computed the likelihood of detecting each of
the three sizes of effect. The average power
was .18 for the detection of small effects, .48
for medium effects, and .83 for large effects.
If psychologists typically expect medium ef-
fects and select sample size as in the above
example, the power of their studies should
indeed be about .50.

Cohen's analysis shows that the statistical
power of many psychological studies is ridicu-
lously low. This is a self-defeating practice:
it makes for frustrated scientists and ineffi-
cient research. The investigator who tests a
valid hypothesis but fails to obtain significant

results cannot help but regard nature as un-
trustworthy or even hostile. Furthermore, as
Overall (1969) has shown, the prevalence of
studies deficient in statistical power is not only
wasteful but actually pernicious: it results in
a large proportion of invalid rejections of the
null hypothesis among published results.

Because considerations of statistical power
are of particular importance in the design of
replication studies, we probed attitudes con-
cerning replication in our questionnaire.

Suppose one of your doctoral students has com-
pleted a difficult and time-consuming experiment on
40 animals. He has scored and analyzed a large num-
ber of variables. His results are generally inconclusive,
but one before-after comparison yields a highly sig-
nificant t — 2.70, which is surprising and could be of
major theoretical significance.

Considering the importance of the result, its sur-
prisal value, and the number of analyses that your
student has performed—

Would you recommend that he replicate the study
before publishing? If you recommend replication,
how many animals would you urge him to run ?

Among the psychologists to whom we put
these questions there was overwhelming senti-
ment favoring replication: it was recom-
mended by 66 out of 75 respondents, probably
because they suspected that the single sig-
nificant result was due to chance. The median
recommendation was for the doctoral student
to run 20 subjects in a replication study. It is
instructive to consider the likely consequences
of this advice. If the mean and the variance
in the second sample are actually identical to
those in the first sample, then the resulting
value of t will be 1.88. Following the reason-
ing of Footnote 2, the student's chance of ob-
taining a significant result in the replication
is only slightly above one-half (for p = .05,
one-tail test). Since we had anticipated that
a replication sample of 20 would appear rea-
sonable to our respondents, we added the fol-
lowing question:

Assume that your unhappy student has in fact
repeated the initial study with 20 additional animals,
and has obtained an insignificant result in the same
direction, t = 1.24. What would you recommend
now? Cheek one: [the numbers in parentheses refer
to the number of respondents who checked each an-
swer I

(«) He should pool the results and publish his
conclusion as fact. (0)
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( b ) lie should report the results as a tentative
finding. (26)

(c) He should run another group of [median —
20] animals. (21)

(d) He should try to find an explanation lor the
difference between the two groups. (30)

Note that regardless of one's confidence in
the original finding, its credibility is surely
enhanced by the replication. Not only is the
experimental effect in the same direction in
the two samples but the magnitude of the
effect in the replication is fully two-thirds of
that in the original study. In view of the sam-
ple size (20) , which our respondents recom-
mended, the replication was about as success-
ful as one is entitled to expect. The distribu-
tion of responses, however, reflects continued
skepticism concerning the student's finding
following the recommended replication. This
unhappy state of affairs is a typical conse-
quence of insufficient statistical power.

In contrast to Responses I) and c, which
can be justified on some grounds, the most
popular response, Response d, is indefensible.
We doubt that the same answer would have
been obtained if the respondents had realized
that the difference between the two studies
does not even approach significance. (If the
variances of the two samples arc equal, /. for
the difference is .53.) In the absence of a
statistical test, our respondents followed the
representation hypothesis: as the difference
between the two samples was larger than they
expected, they viewed it as worthy of expla-
nation. However, the attempt, to "find an ex-
planation for the difference between the two
groups" is in all probability an exercise in ex-
plaining noise.

Altogether our respondents evaluated the
replication rather harshly. This follows from
the representation hypothesis: if we expect all
samples to be very similar to one another,
then almost all replications of a valid hy-
pothesis should he statistically significant. The
harshness of the criterion for successful repli-
cation is manifest in the responses to the fol-
lowing question:

An investigator has reported a result that you
consider implausible. He ran 15 subjects, and reported
a significant value, t = 2 .4G. Another investigator has
attempted to duplicate his procedure, and he ob-
tained a nonsignificant value of t with the same

number of subjects. The direction was the same in
both sets of data.

You arc rcvicwiiiK the literature. What is the
highest value of t in the second set of data that you
would describe as a failure to replicate?

The majority of our respondents regarded I
----- .1.70 as a failure to replicate. If the data of
two such studies (t = 2.46 and t -- 1.70) are
pooled, the value of t for the combined data
is about 3.00 (assuming equal variances).
Thus, we are faced with a paradoxical state of
affairs, in which the same data that would in-
crease our confidence in the finding when
viewed as part of the original study, shake
our confidence when viewed as an independent
study. This double standard is particularly
disturbing since, for many reasons, replica-
tions are usually considered as independent
studies, and hypotheses are often evaluated
by listing confirming and discon firm ing re-
ports.

Contrary to a widespread belief, a case can
be made that a replication sample should
often be larger than the original. The deci-
sion to replicate a once obtained finding often
expresses a great fondness for that finding and
a desire to see it accepted by a skeptical com-
munity. Since that community unreasonably
demands that the replication be indepen-
dently significant, or at least that it approach
significance, one must run a large sample. To
illustrate, it" the unfortunate doctoral student
whose thesis was discussed earlier assumes
the validity of his initial result (I = 2.70, N
-- 40), and if he is willing to accept a risk of
only JO of obtaining a t lower than 1.70, he
should run approximately SO animals in his
replication study. With a somewhat weaker
initial result (I = 2.20, N ~- 40) , the size of
the replication sample required for the same
power rises to about 75.

That the effects discussed thus far are not
limited to hypotheses about means and vari-
ances is demonstrated by the responses to the
following question:

You have run a correlational study, scoring 20
variables on 100 subjects. Twenty-seven of the 190
correlation coefficients are significant at the .OS level;
and 9 of these are significant beyond the .0] level.
The mean absolute level of the significant correla-
tions is .31, and the pattern of results is very rea-
sonable on theoretical grounds. How many of the 27
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significant correlations would you expect to be sig-
nificant again, in an exact replication of the study,
with N — 40 ?

With N = 40, a correlation of about .31 is
required for significance at the .OS level. This
is the mean of the significant correlations in
the original study. Thus, only about half of
the originally significant correlations (i.e., 13
or 14) would remain significant with N = 40.
In addition, of course, the correlations in the
replication are bound to differ from those in
the original study. Hence, by regression ef-
fects, the initially significant coefficients are
most likely to be reduced. Thus, 8 to 10 re-
peated significant correlations from the origi-
nal 2 7 is probably a generous estimate of what
one is entitled to expect. The median estimate
of our respondents is 18. This is more than
the number of repeated significant correla-
tions that will be found if the correlations are
recomputed for 40 subjects randomly selected
from the original 100! Apparently, people ex-
pect more than a mere duplication of the orig-
inal statistics in the replication sample; they
expect a duplication of the significance of re-
sults, with little regard for sample size. This
expectation requires a ludicrous extension of
the representation hypothesis; even the law of
small numbers is incapable of generating such
a result.

The expectation that patterns of results
are replicable almost in their entirety provides
the rationale for a common, though much de-
plored practice. The investigator who com-
putes all correlations between three indexes of
anxiety and three indexes of dependency will
often report and interpret with great confi-
dence the single significant correlation ob-
tained.3 His confidence in the shaky finding
stems from his belief that the obtained corre-
lation matrix is highly representative and
readily replicable.

In review, we have seen that the believer
in the law of small numbers practices science
as follows:

• He gambles his research hypotheses on
small samples without realizing that the odds
against him are unreasonably high. He over-
estimates power.

3 Examples can be supplied on demand.

• He has undue confidence in early trends
(e.g., the data of the first few subjects) and
in the stability of observed patterns (e.g., the
number and identity of significant results).
He overestimates significance.

• In evaluating replications, his or others',
he has unreasonably high expectations about
the replicability of significant results. He un-
derestimates the breadth of confidence inter-
vals.

• He rarely attributes a deviation of results
from expectations to sampling variability, be-
cause he finds a causal "explanation" for any
discrepancy. Thus, he has little opportunity
to recognize sampling variation in action. His
belief in the law of small numbers, therefore,
will forever remain intact.

Our questionnaire elicited considerable evi-
dence for the prevalence of the belief in the
law of small numbers.11 Our typical respondent
is a believer, regardless of the group to which
he belongs. There were practically no differ-
ences between the median responses of audi-
ences at a mathematical psychology meeting
and at a general session of the American Psy-
chological Association convention, although we
make no claims for the representativeness of
either sample. Apparently, acquaintance with
formal logic and with probability theory does
not extinguish erroneous intuitions. What,
then, can be done? Can the belief in the law of
small numbers be abolished or at least con-
trolled?

Research experience is unlikely to help
much, because sampling variation is all too
easily "explained." Corrective experiences are
those that provide neither motive nor oppor-
tunity for spurious explanation. Thus, a stu-
dent in a statistics course may draw repeated
samples of given size from a population, and
learn the effect of sample size on sampling

* Edwards (1968) has argued that people fail to
extract sufficient information or certainty from prob-
abilistic data; he called this failure conservatism.
Our respondents can hardly be described as conserva-
tive. Rather, in accord with the representation hy-
pothesis, they tend to extract more certainty from the
data than the data, in fact, contain. The conditions
under which people may appear conservative are
discussed in Kahnemann, D., and Tversky, A. Sub-
jective probability: A judgment of representativeness.
(Tech. Rep.) Oregon Research Institute, 1971, 2 (2).
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variability from personal observation. We are
far from certain, however, that expectations
can be corrected in this manner, since related
biases, such as the gambler's fallacy, survive
considerable contradictory evidence.

Even if the bias cannot be unlearned, stu-
dents can learn to recognize its existence and
take the necessary precautions. Since the
teaching of statistics is not short on admoni-
tions, a warning about biased statistical intui-
tions may not be out of place. The obvious
precaution is computation. The believer in
the law of small numbers has incorrect intui-
tions about significance level, power, and confi-
dence intervals. Significance levels are usually
computed and reported, but power and con-
fidence limits are not. Perhaps they should be.

Explicit computation of power, relative to
some reasonable hypothesis, for instance, Co-
hen's (1962, 1969) small, large, and medium
effects, should surely be carried out before
any study is done. Such computations will
often lead to the realization that there is
simply no point in running the study unless,
for example, sample size is multiplied by four.
We refuse to believe that a serious investi-
gator will knowingly accept a .50 risk of fail-
ing to confirm a valid research hypothesis. In
addition, computations of power are essential
to the interpretation of negative results, that
is, failures to reject the null hypothesis. Be-
cause readers' intuitive estimates of power are
likely to be wrong, the publication of com-
puted values does not appear to be a waste of
cither readers' time or journal space.

In the early psychological literature, the
convention prevailed of reporting, for example,
a sample mean as X ± I'E, where 1*E is the
probable error (i.e., the SO'/o confidence in-
terval around the mean). This convention was
later abandoned in favor of the hypothesis-
testing formulation. A confidence interval,
however, provides a useful index of sampling
variability, and it is precisely this variability
that we tend to underestimate. The emphasis
on significance levels tends to obscure a funda-
mental distinction between the size of an effect
and its statistical significance. Regardless of

sample size, the size of an effect in one study
is a reasonable estimate of the size of the effect
in replication. In contrast, the estimated sig-
nificance level in a replication depends criti-
cally on sample size. Unrealistic expectations
concerning the replicability of significance lev-
els may be corrected if the distinction between
size and significance is clarified, and if the
computed size of observed effects is routinely
reported. From this point of view, at least,
the acceptance of the hypothesis-testing model
has not been an unmixed blessing for psychol-
ogy.

The true believer in the law of small num-
bers commits his multitude of sins against the
logic of statistical inference in good faith. The
representation hypothesis describes a cogni-
tive or perceptual bias, which operates regard-
less of motivational factors. Thus, while the
hasty rejection of the null hypothesis is grati-
fying, the rejection of a cherished hypothesis
is aggravating, yet the true believer is subject
to both. His intuitive expectations are gov-
erned by a consistent misperception of the
world rather than by opportunistic wishful
thinking. Given some editorial prodding, he
may be willing to regard his statistical intui-
tions with proper suspicion and replace im-
pression formation by computation whenever
possible.
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